Search results for "Quantum thermodynamics"

showing 10 items of 10 documents

Quantum collision models: Open system dynamics from repeated interactions

2022

We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes: a class of microscopic system-bath models for investigating open quantum systems dynamics whose use is currently spreading in a number of research areas. Through dedicated sections and a pedagogical approach, we discuss the CMs definition and general properties, their use for the derivation of master equations, their connection with quantum trajectories, their application in non-equilibrium quantum thermodynamics, their non-Markovian generalizations, their emergence from conventional system-bath microscopic models and link to the input-output formalism. The state of the art o…

Quantum non-Markovian dynamicsQuantum PhysicsQuantum opticsQuantum weak measurementsInput–output formalismFOS: Physical sciencesGeneral Physics and AstronomyRepeated interactionsSettore FIS/03 - Fisica Della MateriaOpen quantum systemsQuantum trajectoriesCascaded master equations; Input-output formalism; Open quantum systems; Quantum non-Markovian dynamics; Quantum optics; Quantum thermodynamics; Quantum trajectories; Quantum weak measurements; Repeated interactionsCascaded master equationsQuantum Physics (quant-ph)Quantum thermodynamicsPhysics Reports
researchProduct

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Nanoscale Heat Engine Beyond the Carnot Limit

2013

We consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to a squeezed thermal reservoir. We show that the efficiency at maximum power increases with the degree of squeezing, surpassing the standard Carnot limit and approaching unity exponentially for large squeezing parameters. We further propose an experimental scheme to implement such a model system by using a single trapped ion in a linear Paul trap with special geometry. Our analytical investigations are supported by Monte Carlo simulations that demonstrate the feasibility of our proposal. For realistic trap parameters, an increase of the efficiency at maximum power of up to a factor of 4 is reached, largely ex…

Condensed Matter::Quantum GasesPhysicsThermal reservoirMaximum power principleMonte Carlo methodGeneral Physics and AstronomyMechanicssymbols.namesakeQuantum mechanicssymbolsOtto cycleCarnot cycleQuantum thermodynamicsHarmonic oscillatorHeat enginePhysical Review Letters
researchProduct

Generalized Geometric Quantum Speed Limits

2016

The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the non uniqueness of a bona fide measure of distinguishability defined on the quantum state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum spee…

Quantum PhysicsComputer sciencePhysicsQC1-999General Physics and AstronomyFOS: Physical sciencesINFORMAÇÃO QUÂNTICA01 natural sciencesUnitary stateOpen system (systems theory)010305 fluids & plasmasMetrologyQuantum technology0103 physical sciencesQuantum systemStatistical physics010306 general physicsQuantum thermodynamicsQuantum Physics (quant-ph)QuantumQuantum computerPhysical Review X
researchProduct

Fluctuation theorems for non-Markovian quantum processes

2013

Exploiting previous results on Markovian dynamics and fluctuation theorems, we study the consequences of memory effects on single realizations of nonequilibrium processes within an open system approach. The entropy production along single trajectories for forward and backward processes is obtained with the help of a recently proposed classical-like non-Markovian stochastic unravelling, which is demonstrated to lead to a correction of the standard entropic fluctuation theorem. This correction is interpreted as resulting from the interplay between the information extracted from the system through measurements and the flow of information from the environment to the open system: Due to memory e…

Quantum PhysicsFluctuation theorems non-Markovianity Open Quantum Systems Memory effects Entropy Quantum ThermodynamicsQuantum decoherenceStatistical Mechanics (cond-mat.stat-mech)Entropy productionFluctuation theoremFOS: Physical sciencesNon-equilibrium thermodynamicsMarkov processOpen system (systems theory)symbols.namesakesymbolsStatistical physicsQuantum Physics (quant-ph)QuantumEntropy (arrow of time)Condensed Matter - Statistical MechanicsMathematics
researchProduct

Nonequilibrium critical scaling in quantum thermodynamics

2016

The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully …

Quantum phase transitionFOS: Physical sciencesNon-equilibrium thermodynamics02 engineering and technology01 natural sciencesCondensed Matter - Strongly Correlated Electronsquant-phCritical point (thermodynamics)Quantum critical pointQuantum mechanics0103 physical sciencesStatistical physicscond-mat.stat-mech010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Density matrix renormalization group021001 nanoscience & nanotechnology2-IMPURITY KONDO PROBLEM; MATRIX RENORMALIZATION-GROUP; JARZYNSKI EQUALITY; CRITICAL-POINT; SYSTEMS; MODELcond-mat.str-elQuantum Physics (quant-ph)0210 nano-technologyKondo modelCritical exponentPhysical Review B
researchProduct

Extracting work from random collisions: A model of a quantum heat engine

2022

We study the statistical distribution of the ergotropy and of the efficiency of a single-qubit battery ad of a single-qubit Otto engine, respectively fuelled by random collisions. The single qubit, our working fluid, is assumed to exchange energy with two reservoirs, a non-equilibrium "hot" reservoir and a zero temperature cold reservoir. The interactions between the qubit and the reservoirs is described in terms of a collision model of open system dynamics. The qubit interacts with the non-equilibrium reservoir (a large ensemble of qudits all prepared in the same pure state) via random unitary collisions and with the cold reservoir (a large ensemble of qubits in their ground state) via a p…

Quantum PhysicsRandom collisionsCold working; Engines; Ground stateStatistical Mechanics (cond-mat.stat-mech)Quantum ThermodynamicsFOS: Physical sciencesQuantum PhysicsQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della MateriaCondensed Matter - Statistical MechanicsPhysical Review E
researchProduct

Energy bounds for entangled states

2019

We find the minimum and the maximum value for the local energy of an arbitrary bipartite system in a pure state for any given amount of entanglement. We also identify families of states reaching these lower or upper bounds. Moreover, we numerically study the probability of randomly generating pure states close to these energetic bounds finding, in all the considered configurations, that it is extremely low except for the two-qubit case and highly degenerate cases. Then, we show that the bounds found for pure states are valid also for mixed states. These results can be important in quantum technologies to design energetically more efficient entanglement generation protocols. Finally, we poin…

Quantum opticsPhysicsQuantum PhysicsBipartite systemQuantum mechanicsFOS: Physical sciencesQuantum entanglementQuantum informationQuantum thermodynamicsQuantum Physics (quant-ph)Entanglement Energy Quantum ThermodynamicsEnergy (signal processing)
researchProduct

Thermodynamics of a Phase-Driven Proximity Josephson Junction

2019

We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, temperature and entropy are thermodynamical variables connected by equations of state. These allow conceiving quasi-static processes that we characterize in terms of heat and work exchanged. Finally, we combine such processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in both engine and refrigerator operating mode.

Josephson effectsns junctionStirling enginesuprajohtavuusGeneral Physics and Astronomy02 engineering and technology01 natural sciences7. Clean energysuprajohteetlaw.inventionlawJosephson junctionMaxwell relationCondensed Matter::Superconductivityquasi-particles entropykvanttifysiikkalcsh:Scienceproximity effect; superconductivity; Josephson junction; SNS junction; Josephson thermodynamics; Maxwell relation; quasi-particles entropy; quantum thermodynamics; quantum machines; quantum coolersPhysicsSuperconductivityQuantum PhysicsCondensed matter physicssuperconductivitySupercurrent021001 nanoscience & nanotechnologyThermodynamic systemlcsh:QC1-999termodynamiikkaproximity effectjosephson thermodynamics0210 nano-technologyRefrigerator carFOS: Physical sciencesJosephson thermodynamicslcsh:AstrophysicsArticleSuperconductivity (cond-mat.supr-con)Entropy (classical thermodynamics)quantum coolers0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:QB460-466010306 general physicsquantum machinesPhase differenceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivitySNS junctionjosephson junctionmaxwell relationquantum thermodynamicslcsh:QQuantum Physics (quant-ph)lcsh:PhysicsEntropy
researchProduct

Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature

2021

This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling…

Density matrixQuantum dynamicsmolecular junction; non-Hermitian quantum mechanics; open quantum system dynamics; quantum thermodynamics; Quantum Physics; Quantum Physics; 80M99 81-08 81-10 81P99General Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics02 engineering and technology01 natural sciencesArticle81-1003.67.PpQuantum stateQuantum mechanicslcsh:QB460-4660103 physical sciences80M9931.15.xglcsh:Science010306 general physicsQuantum thermodynamicsQuantumnon-Hermitian quantum mechanicsQuantum tunnelling05.30.-dPhysicsQuantum PhysicsOperator (physics)80M99 81-08 81-10 81P9981-08021001 nanoscience & nanotechnologyopen quantum system dynamicslcsh:QC1-99981P99Phase space05.60.Ggquantum thermodynamicslcsh:Q0210 nano-technologyQuantum Physics (quant-ph)molecular junctionlcsh:Physics02.60.Cb
researchProduct